We previously reported that hamster monoclonal antibody 7E9, which reacts with the C-terminus of the gamma-chain of mouse fibrinogen, inhibits factor (F)XIIIa-mediated cross-linking, platelet adhesion to fibrinogen, and platelet-mediated clot retraction; in addition, it facilitates thrombolysis. To understand the mechanism(s) by which 7E9 acts, we have now studied the effect of 7E9 IgG, 7E9 F(ab')2, and 7E9 Fab on fibrin clot structure using electron microscopy and measurements of clot physical properties. By transmission electron microscopy, 7E9 IgG was found to bind primarily to the ends of the fibrinogen molecule. 7E9 IgG and 7E9 F(ab')2, both of which are bivalent, were capable of binding to two fibrinogen molecules simultaneously. Scanning electron microscopy of clots formed in the presence of equimolar concentrations of fibrinogen and 7E9 IgG demonstrated the presence of very short and thin fibers (63% reduction in fiber diameter) arranged in unusual bundles, surrounding large pores. Clots formed in the presence of 7E9 demonstrated a marked increase in permeation (approximately 25-fold increase in perfusion rate at constant pressure), an approximately 50% reduction in dynamic storage modulus (G'; a reflection of decreased clot stiffness), and an approximately 38% increase in loss tangent (tan delta; a reflection of the clot's ability to undergo irreversible deformation). These clots also showed decreased absorbance at 350 nm, reflecting the clot structure produced by 7E9 IgG. The effects of 7E9 IgG were not observed with control hamster IgG, 7E9 F(ab')2, or 7E9 Fab fragments, indicating requirements for both the binding properties and mass of 7E9 IgG. These data indicate that 7E9 antibody affects fibrin clot structure in a way that is consistent with the enhanced fibrinolysis we reported previously. Together with our previous observations, we conclude that 7E9 is directed at a strategically important region of fibrinogen with regard to platelet function, FXIIIa-mediated cross-linking, clot retraction, fibrin structure, and fibrinolysis. Thus targeting this region of fibrinogen may have antithrombotic therapeutic potential.