Self-assembled fibrillation of wheat gluten is a common phenomenon in the daily production and processing of wheat flour products. The driving forces for its formation and the factors that influence the morphology of fibrils have not been thoroughly investigated. In this study, the effect of three bonding changes (breaking hydrogen bonds, strengthening hydrophobic interactions, and SH-SS exchange reactions) on gluten polypeptide (GP) fibrillation was simulated by adjusting the heating temperature (room temperature (RT), 45 °C, 65 °C, and 95 °C). The results showed that the breakage of hydrogen bonds could induce conformational transitions in GPs and help to excite fibrillation in GPs. Strengthened hydrophobic interactions significantly contributed to the fibrillation of GPs. Covalent crosslinks generated by SH-SS exchange reactions might also promote the fibrillation of GPs. GPs with different degrees of hydrolysis (4.0%, 6.0%, and 10.0%, represented by DH 4, DH 6, and DH 10, respectively) presented different extents of fibrillation, with DH 10 GPs having a higher propensity to fibrillation than DH 4 and DH 6 GPs. The results of Fourier's transform infrared spectroscopy indicated that hydrophobic interactions drive the transition from a random coil and α-helix to a β-sheet. In addition, hydrophobic interactions also drive the intermolecular polymerization of GPs, resulting in larger molecular weight aggregates. The morphology presented by transmission electron microscopy showed that the greater the DH, the stronger the tendency for the worm-like aggregation of GPs.
Read full abstract