We propose and demonstrate a tunable and switchable multi-wavelength fiber ring laser configuration based on a Mach–Zehnder interferometer (MZI) filter. The MZI was fabricated using a core-offset splicing technique, with a 2 cm piece of thin-core erbium-doped fiber (TCEDF), with a core diameter of 2.90 µm, coupled in the central region of the MZI between two segments of single-mode fiber (SMF). By applying curvature to the MZI filter, we generated lasing single-, double-, triple-, and quadruple-emission lines with a curvature range from 2.3452 m−1 to 6.0495 m−1. A single-emission lasing line can be tuned from 1556.63 nm to 1564.25 nm with a tuning span of 7.62 nm and an SMSR of 49.80 dB. The laser emission can be switched to quadruple- and triple-emission lasing signals, with SMSR values of 39.96 dB and 36.83 dB, respectively. The dual-narrow emission lasing signal can be tuned from 1564.56 nm to 1561.34 nm, with an SMSR of 40.46 dB. Another lasing dual-emission signal can be tuned from 1585.69 nm to 1576.89 nm, producing an 8.8 nm tuning range, and from 1572.53 nm to 1563.66 nm, producing an 8.87 nm range, with the best SMSR of 42.35 dB.
Read full abstract