In nearly all the failure criteria for the FRP (fiber reinforced plastic), the fundamental strength of the FRP under uniaxial tensile, compressive and pure shear stress were utilized to construct appropriate mathematical function relationship with the multiaxial stress. Among them, the strength of the FRP under transverse pure shear stress was influenced by various factors and could not be directly obtained from tests. In this paper, transverse pure shear failure behavior of FRP was studied using finite element analysis based on RVE models, the RSE and HC algorithm were utilized to generate the FRP with different fiber distribution, mainly refers the different fiber clusters which was commonly experimentally observed. The bilinear cohesive model and extended linear Drucker Prager model were used to characterize the mechanical behavior of the interface and matrix respectively. Then, constraint of periodic boundary condition was applied for the RVE models. Difference on failure fracture behavior of FRP with different fiber distribution were identified and assessed under transverse pure shear stress, while the connection between stress triaxiality and initial damage equivalent plastic strain of the matrix was also altered. On this basis, the distinction of the maximum transverse pure shear stress, the crack resistance strength and the transverse shear strength was thoroughly discussed and identified, which provided a theoretic reference for the failure analysis of the FRP.