This current research scrutinizes the adsorption behavior of Crystal Violeton Activated Bamboo Fiber Powder (ABFP)for water purification. By leveraging four advanced statistical physics scenarios (Hill framework with single energy, Hill framework with dual-energy, Double-layer framework with single energy and Double-layer framework with dual energy), experimental data is meticulously fitted to elucidate the surface adhesion phenomenon by uncovering its decisive influencing metrics.Four convergence criteria (R2, RMSE, AIC and RSS) have been employed to identify the most accurate model while steriographic along with energetic-thermodynamic metrics have been inspected in response to combined effects of temperature and concentration. Major outcomes revealed that the fourth scenario exhibits the most favorable agreement with the measured points. The spatial arrangement factor n varied from 0.58 to 0.75 indicating that the dye retention can occur via two different orientations (parallel and non-parallel) with different percentages. In addition, the adsorption amounts at temperatures of 298, 308 and 318 K were 1403.13, 1365.75 and 1270.79 mg/g, respectively, revealing the exothermicity of crystal violet adsorption onto the pores of Activated Bamboo Fiber Powder. The estimated docking energies were below 40 kJ/mol, suggesting that physical forces primarily govern the surface attachment. Assessment of enthalpy and Gibbs free energy demonstrated that the adsorption process occursfeasibly, spontaneously and is accompanied by heat release. The pore size distribution (PSD) of (ABFP) are determined. Since, the Activated Bamboo Fiber Powder (ABFP) showed promising results for competitive adsorption, thus being of relevance to the industrial sector.
Read full abstract