In the present study aims to produce high-strength fiber concrete containing microsilica and metakaolin. Eight concrete mixing samples have been defined. The samples include the control concrete with ordinary Portland cement, replacing 10 percent of the weight of cement with microsilica. The amount of microsilica was kept constant in the next six designs. Three samples with the addition of Forta fibers at the rate of 0.2, 0.5, and 0.8 percent. Finally three samples with 0.5% Forta fibers and 8, 10 and 12% metakaolin were subjected to compressive, tensile and elastic modulus tests at the ages of 7 and 28 days. The addition of Forta fibers and the replacement of microsilica and metakaolin in concrete reduced the slump of concrete up to 5 cm. The highest compressive strength, tensile strength and elastic modulus at the age of 28 days of design 8 (concrete containing 10% microsilica, 0.5% Forte fibers and 12% metakaolin) are respectively equal to 73.6 MPa, 5.55 MPa and 37.49 MPa with The increase was 19.43%, 32.77% and 15.21% compared to control concrete without pozzolan and additives. Also, the relationship between compressive and tensile strength were presented. In total, all samples containing microsilica and fibers had a favorable effect on the resistance properties of concrete compared to the control design. The constant concern of bridge engineers, especially concrete bridges, is the production of concrete with high-strength and very low permeability in the face of their surroundings. Therefore, the result of this research can be a significant contribution to improving the quality of concrete used in bridge constructions.