A representative model for multilayer natural fibre composite (NFC) plates is introduced to investigate its homogenised strength criterion. A three-layer NFC plate model is used to analyse the local stress–strain characteristics in multi-layered NFC. Finite element analysis (FEA) is performed on the representative volume element (RVE) under various boundary conditions to investigate stress and strain at macroscopic and microscopic levels. The explicit assessment of homogenised strength requires calculating stress tensors and equivalent stresses to determine parameter values. The precise specification of homogenised strength requirements assists in comprehending the material's behaviour under various loading conditions, which affects composite application design and optimisation techniques. The study examined the effect of fibre orientation angles on NFC's mechanical behaviour. The results demonstrate that flax fibres have comparatively higher stress levels than coir fibres. This study improves the understanding of natural fibre laminate composites’ macroscopic and microscopic behaviours, that is, the material's response under different loadings. The definition of homogenised strength criterion on NFC improves their design evaluations.