A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < −0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.