Thrombosis remains a significant and potentially catastrophic complication of polyethylene terephthalate (Dacron) prosthetic vascular graft implantation. Numerous attempts have been made to create a novel surface that reduces the adverse effects of blood interaction with the material. The purpose of this study was to create reactive groups on Dacron without significantly altering the chemical and physical properties of the biomaterial. These groups would then serve as "anchor sites" for covalent attachment of the blood protein albumin to the surface, thus creating a more biocompatible surface. Denier reduction, an established textile chemistry procedure that creates carboxyl groups on the fiber surface via hydrolysis of the material, was performed at 100 degrees C using sodium hydroxide concentrations of 0.5, 1.0, 2.5, and 5.0% (treated materials referred to as 0.5% hydrolyzed etc.). Tensile strength determination of hydrolyzed materials revealed no statistically significant difference in material strength between control, 0.5, and 1.0% hydrolyzed materials; the 2.5 and 5.0% hydrolyzed materials had significant strength loss as compared to the controls. Significant fiber weight loss occurred in the 1.0, 2.5, and 5.0% hydrolyzed Dacron segments. The 0.5% hydrolyzed material did not have any significant weight loss. Covalent linkage of 125I-albumin to these modified materials using the crosslinker 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride (EDC) resulted in the 0.5% hydrolyzed material having the greatest protein binding (330 ng/mg Dacron, 2,4-fold greater than control). Incubation of the 0.5% hydrolyzed material with EDC and various concentrations of 125I-albumin resulted in the 14.80 microM solution permitting the greatest binding per milligram Dacron (330 ng/mg Dacron). Scanning electron microscopy, performed blindly, revealed no change in the 0.5% hydrolyzed Dacron as compared to untreated Dacron. The 5.0% hydrolyzed Dacron, however, had noticeable structural damage on the outer periphery of the fiber surface. Observation of the untreated Dacron with nonspecifically bound albumin showed scattered areas of albumin adherent to the fiber surface whereas covalent linkage of albumin to the 0.5% hydrolyzed Dacron via EDC crosslinking showed numerous albumin moieties on each fiber. This study demonstrates that a clinically accepted biomaterial (Dacron) can be chemically modified, without significantly altering the physical and chemical characteristics of the biomaterial, in order to covalently bind albumin to the fiber surface. Thus, these results serve as foundation for creating potential novel biomaterials without significantly altering the properties of the original biomaterial.
Read full abstract