Unidirectional SiC/SiC composites are prepared by nano-powder infiltration and transient eutectic-phase (NITE) process, using pyrolytic carbon (PyC)-coated Tyranno-SA SiC fibers as reinforcement and SiC nano-powder with sintering additives for matrix formation. The effects of two kinds of fiber volume fraction incorporating fabrication temperature were characterized on densification, microstructure and mechanical properties. Densification of the composites with low fiber volume fraction (appropriately 30 vol%) was developed even at lower fabrication temperature of 1800 °C, and then saturated at 3rd stage of matrix densification corresponding to classic liquid phase sintering. Hence, densification of the composites with high volume fraction (above 50 vol%) became restricted because the many fibers retarded the infiltration of SiC nano-powder at lower fabrication temperature of 1800 °C. When fabrication temperature increased by 1900 °C, densification of the composites was effectively enhanced in the intra-fiber-bundles and simultaneously the interaction between PyC interface and matrix was strengthened. SEM observation on the fracture surface revealed that fiber pull-out length was accordingly changed with fabrication temperature as well as fiber volume fraction, which dominated tensile fracture behaviors. Through NITE process, SiC/SiC composites with two fracture types were successfully developed by tailoring of appropriate fabrication temperature to fiber volume fraction as follows: (1) high ductility type and (2) high strength type.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access