We establish a connection between differential graded and simplicial categories by constructing a three-step zig-zag of Quillen adjunctions relating the homotopy theories of the two. In an intermediate step, we extend the Dold–Kan correspondence to a Quillen equivalence between categories enriched over non-negatively graded complexes and categories enriched over simplicial modules. As an application, we obtain a simple calculation of Simpson's homotopy fiber, which is known to be a key step in the construction of a moduli stack of perfect complexes on a smooth projective variety.
Read full abstract