Metal fiber is introduced as a new filter media in wall-flow Diesel Particulate Filter (DPF) system. This technology has high temperature durability which is required for filter regeneration, and can maintain the mechanical strength even in the extreme exhaust-related vibrations of vehicles. However, the regeneration near the wall (outer layer) is more difficult because of the heat loss and reduced gas flow near the wall. In this study, a flow is simulated to determine the flow control method for the more uniform flow in all filter layer. By using Star CCM+ commercial software, we obtain local velocity, streamline, and pressure distributions in the filter, which are typically difficult to obtain from measurements. The major control factors are the filter porosity, size and location of the distribution plate, and the number of blades of the swirler. By placing the distribution plate in front of the filter, the flow velocity near the wall was increased. The optimum location and size of the flat plate were chosen. By attaching the blade on the plate the flow velocity near the wall was increased more. Therefore, the regeneration efficiency is increased by using the swirler-type metal fiber DPF system.