Uncoupled multicore fibers (MCFs) are expected to be the first to be commercially deployed due to their high compatibility with existing single-mode fiber technologies. Since MCFs have a 3D shape, they generally exhibit connection polarity. Thus, optical devices based on MCFs also generally have polarity, which will complicate the core resource assignment and end-to-end core connections in future MCF-based spatial channel networks (SCNs). In this paper, we first discuss the polarity of MCF-based optical devices (MODs) such as MCF patch cords, spatial multiplexers (SMUXs), core selective switches (CSSs), and core selectors (CSs). We then propose a definition for global core numbers in a two-MCF unidirectional (2MCF-UD) SCN and a single-MCF bidirectional (1MCF-BD) SCN. We also propose a method for managing the polarity of MODs and correctly connecting cores end-to-end. To verify the effectiveness of the proposed global core numbering and polarity management method for MODs, testbeds emulating a 2MCF-UD SCN and a 1MCF-BD SCN are constructed using prototype CSS, CS, and SMUX devices. By using light with different optical frequencies as input and observing the output spectrum, we confirm that the spatial channel specified by the global core number is established correctly end-to-end in the SCN if the polarity of the MODs is set correctly.
Read full abstract