The FORZA trial (FFR or OCT Guidance to Revascularize Intermediate Coronary Stenosis Using Angioplasty) prospectively compared the use of fractional flow reserve (FFR) or optical coherence tomography (OCT) for treatment decisions and percutaneous coronary intervention (PCI) optimization in patients with angiographically intermediate coronary lesions. Murray law-based quantitative-flow-ratio (μQFR) is a novel noninvasive method for the computation of FFR. In the present study, we evaluated the clinical impact of μQFR, FFR, or OCT guidance in FORZA trial lesions at 3-year follow-up. μQFR was assessed at baseline and, in the case of a decision to intervene, after (FFR- or OCT-guided) PCI. The baseline μQFR was considered the final μQFR for deferred lesions, and post-PCI μQFR value was taken as final for stented lesions. The primary end point was target vessel failure ([TVF]; cardiac death, target-vessel-related myocardial infarction, and target-vessel-revascularization) at a 3-year follow-up. A total of 419 vessels (199 OCT-guided and 220 FFR-guided) were included in the FORZA trial. μQFR was evaluated in 256 deferred lesions and 159 treated lesions (98 OCT-guided PCI and 61 FFR-guided PCI). In treated lesions, post-PCI μQFR was higher in OCT-group compared with FFR-group (median, 0.93 versus 0.91; P=0.023), and the post-PCI μQFR improvement was greater in FFR-group (0.14 versus 0.08; P<0.0001). At 3-year follow-up, OCT- and FFR-guided treatment decisions resulted in comparable TVF rate (6.7% versus 7.9%; P=0.617). Final μQFR was the only predictor of TVF. μQFR ≤0.89 was associated with 3× increase in TVF (11.6% versus 3.7%; P=0.004). PCI was a predictor of higher final μQFR (odds ratio, 0.22 [95% CI, 0.14-0.34]; P<0.001). In vessels with angiographically intermediate coronary lesions, OCT-guided PCI resulted in comparable clinical outcomes as FFR-guided PCI. μQFR estimated at the end of diagnostic or interventional procedure predicted 3-year TVF. URL: https://www.clinicaltrials.gov; Unique identifier: NCT01824030.
Read full abstract