Current intrapartum fetal oxygen saturation (SaO2) monitoring methodologies are limited, mostly consisting of fetal heart rate monitoring which is a poor predictor of fetal hypoxia. A newly developed transabdominal fetal oximeter (TFO) may be able to determine fetal SaO2 non-invasively. This study is to validate a novel TFO in determining fetal SaO2 in a hypoxic fetal lamb model. Fetal hypoxia was induced in at-term pregnant ewe by placing an aortic occlusion balloon infrarenally and inflating it in a stepwise fashion to decrease blood flow to the uterine artery. The inflation was held at each step for 10min, and fetal arterial blood gases (ABGs) were intermittently recorded from the fetal carotid artery. The balloon catheter was deflated when fetal SaO2 fell below 15%, and the fetus was recovered. A total of three desaturation experiments were performed. The average fetal SpO2 reported by the TFO was derived at each hypoxic level and correlated with the ABG measures. Fetal SaO2 from the ABGs ranged from 10.5 to 66%. The TFO SpO2 correlated with the ABG fetal SaO2 (r-squared = 0.856) with no significant differences (p> 0.5). The fetal SpO2 measurements from TFO were significantly different than the maternal SpO2 (p< 0.01), which suggests that the transcutaneous measurements are penetrating through the maternal abdomen sufficiently and are expressing the underlying fetal tissue physiology. The recently developed TFO system was able to non-invasively report the fetal SpO2, which showed strong correlation with ABG measures and showed no significant differences.
Read full abstract