Milk and dairy products are a major functional food group of growing scientific and commercial interest due to their nutritional value and bioactive “load”. A major fraction of the latter is attributed to milk’s rich protein content and its biofunctional peptides that occur naturally during digestion. On the basis of the identified proteome datasets of milk whey from sheep and goat breeds in Greece and feta cheese obtained during previous work, we applied an in silico workflow to predict and characterise the antimicrobial peptide content of these proteomes. We utilised existing tools for predicting peptide sequences with antimicrobial traits complemented by in silico protein cleavage modelling to identify frequently occurring antimicrobial peptides (AMPs) in the gastrointestinal (GI) tract in humans. The peptides of interest were finally assessed for their stability with respect to their susceptibility to cleavage by endogenous proteases expressed along the intestinal part of the GI tract and ranked with respect to both their antimicrobial and stability scores.