Application of exogenous N fertilizers provides agronomic benefits but carries environmental liabilities. Managing benefits and liabilities of N-based fertilizers in conventional (CNV) and organic (ORG) cropping systems might be improved with better knowledge of nutrient dynamics, the generation of intrinsic N, and maintenance of soil organic matter. This study evaluated mineral N dynamics, yields, residue inputs, and change in soil organic C (SOC) and total N (TN) in strip-tilled, four-year crop rotations [corn (Zea mays L.)-soybean (Glycine max [L.] Merr.)-wheat under-seeded with alfalfa (Triticum aestivum L./Medicago sativa L.)-alfalfa] over eight years of production under CNV management using mineral-N (NO3NH4) and chemical pesticides or ORG management using organic-N (animal manure) and no chemical treatments. In ORG, N availability increased over time, but did not benefit ORG yields due to poor control of insects and weeds. Corn, soybean, and wheat grain yields were 1.9 to 2.7 times greater in CNV. In general, SOC was lost in CNV but did not change in ORG. Cumulative yield N removals exceeded cumulative fertilizer-N inputs by an average of 78% in CNV and 64% in ORG. These results indicated ORG management supported N availability by generating intrinsic N.
Read full abstract