Soil fertility is vital for the growth of tea plants. The physicochemical properties of soil play a key role in the evaluation of soil fertility. Thus, realizing the rapid and accurate detection of soil physicochemical properties is of great significance for promoting the development of precision agriculture in tea plantations. In recent years, spectral data have become an important tool for the non-destructive testing of soil physicochemical properties. In this study, a support vector regression (SVR) model was constructed to model the hydrolyzed nitrogen, available potassium, and effective phosphorus in tea plantation soils of different grain sizes. Then, the successful projections algorithm (SPA) and least-angle regression (LAR) and bootstrapping soft shrinkage (BOSS) variable importance screening methods were used to optimize the variables in the soil physicochemical properties. The findings demonstrated that soil particle sizes of 0.25-0.5 mm produced the best predictions for all three physicochemical properties. After further using the dimensionality reduction approach, the LAR algorithm (R2C = 0.979, R2P = 0.976, RPD = 6.613) performed optimally in the prediction model for hydrolytic nitrogen at a soil particle size of 0.25~0.5. The models using data dimensionality reduction and those that used the BOSS method to estimate available potassium (R2C = 0.977, R2P = 0.981, RPD = 7.222) and effective phosphorus (R2C = 0.969, R2P = 0.964, RPD = 5.163) had the best accuracy. In order to offer a reference for the accurate detection of soil physicochemical properties in tea plantations, this study investigated the modeling effect of each physicochemical property under various soil particle sizes and integrated the regression model with various downscaling strategies.
Read full abstract