Antimicrobial resistance is a growing concern due to the growth of antibiotic-resistant microorganisms, which makes it difficult to treat infection. Due to its broad-spectrum antimicrobial properties against a diverse array of bacteria, both Gram-positive and Gram-negative bacteria, and fungi, Rhynchophorus ferrugineus larval antimicrobial peptides (AMPs) have demonstrated potential as antimicrobial agents for the treatment of microbial infections and prevention of antibiotic resistance. This study emphasizes the unexplored mechanisms of action of R. ferrugineus larvae against microorganisms. Among the most widely discussed mechanisms is the effect of AMPs in larvae in response to a threat or infection. Modulation of immune-related genes in the intestine and phagocytic capacity of its hemocytes may also affect the antimicrobial activity of R. ferrugineus larvae, with an increase in phenoloxidase activity possibly correlated with microbial clearance and survival rates of larvae. The safety and toxicity of R. ferrugineus larvae extracts, as well as their long-term efficacy, are also addressed in this paper. The implications of future research are explored in this paper, and it is certain that R. ferrugineus larvae have the potential to be developed as a broad-spectrum antimicrobial agent with proper investigation.
Read full abstract