Abstract

As the larvae of the date palm pest, the red palm weevil, Rhynchophorus ferrugineus, feeds on the host tissue, they emit a distinctive sound which can be recorded outside of the infected tree. We evaluated the response of infective juveniles (IJs) of the entomopathogenic nematodes Steinernema carpocapsae to the R. ferrugineus larvae and it’s sound source, separately. In the presence of the insect larvae, 50.2 % of total IJs moved toward those larvae. Recorded insect larvae sound emitted by the speaker resulted in 7% of total IJs near the sound source. RNA-Seq data indicated that more genes were downregulated in S. carpocapsae IJs exposed to insect and speaker compared to non-stimulated IJs. IJs exposed to insect exhibited more up-regulated genes than IJs exposed to speaker. Enriched pathways and biological processes in IJs were similar for both stimuli. The inhibition of locomotion, regulation of neurotransmitter secretion, response to biotic stimulus, and cellular response to chemical stimuli were enriched with unique GO terms for speaker treatment. The regulation of localization, sodium ion transmembrane transport, regulation of response to stress and response to organic substances were the GO categories enriched unique to insect. The host-parasitic interaction was regulated by the differential expression of Ras/MAP kinase, TGF-beta signaling, insulin signaling, AMPK signaling, PPAR signaling pathways and many developmental pathways. More prominent R. ferrugineus host localization by S. carpocapsae was primarily due to the differential transcriptional regulation of olfactory signal transduction, FOXO-family proteins, calcium signaling, WNT and mTOR signaling pathway. The neural basis for the nematode attraction to insect host is based on the chemosensation and the mechanosensation. Many neuropeptides and neuromodulators are involved in regulating the foraging behavior of S. carpocapsae. The results of this study provide new insights into the molecular mechanisms that allow these nematodes to seek insect hosts. Our finding, especially the molecular ones suggest that chemical cues emitted by the active insect host are stimulants of nematodes attraction. Whereas the sound emitted by the insect has minor effects on the nematode behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.