Nanoparticle syntheses utilizing biomimetic approaches have advanced in recent years. Polypeptides, with their ability to influence inorganic crystal growth, are a topic of great interest. Their effect on the particle formation has not been completely understood yet. Here we report a bioinspired synthesis of cobalt ferrite nanoparticles carried out in vitro under mild conditions using a short, synthetic polypeptide c25-mms6. The influence of c25-mms6 on the nanoparticle formation was investigated by comparing the particles synthesized with the polypeptide to particles synthesized under equivalent conditions without c25-mms6. A separation into D small,av = 10 nm small, superparamagnetic spheres and D big,av = 48 nm disc-like single-domain particles was observed. Non-stoichiometric cobalt ferrite particles with a shape-dependent stoichiometry were produced in the polypeptide-free synthesis. Stoichiometric D small,av = 10 nm CoFe2O4 spheres and D big,av = 60–70 nm Co2FeO4 ferromagnetic discs were obtained in the polypeptide-enhanced synthesis. The results indicate that the polypeptide acts as a catalyst during the multistep biomineralization process and allows the formation of stoichiometric phases which cannot be synthesized at room temperature using conventional bottom-up syntheses.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access