A cyclic cylindrical 3d-4f tetranuclear structure, in which the 3d and 4f magnetic ions are arrayed alternately, has been found to be a suitable molecular design to produce a large magnetic moment and large magnetic anisotropy. Complexes 3-10 with the chemical formula [MLLn(hfac)2]2 ((MII, LnIII) = (Cu, Eu) (3), (Cu, Gd) (4), (Cu, Tb) (5), (Cu, Dy) (6), (Ni, Eu) (7), (Ni, Gd) (8), (Ni, Tb) (9), (Ni, Dy) (10)) have been synthesized, where H3L = 1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane and Hhfac = hexafluoroacetylacetone. The powder X-ray diffractions and FAB-mass spectra demonstrated that these complexes assume a similar tetranuclear structure. The crystal structures of 4 and 5 showed that each complex has a cyclic cylindrical tetranuclear CuII2LnIII2 structure, in which the CuII complex functions as a "bridging ligand-complex" to two adjacent LnIII ions. The temperature-dependent magnetic susceptibilities from 2 to 300 K and the field-dependent magnetizations at 2 K from 0 to 5 T have been measured for four pairs of CuII2LnIII2 and NiII2LnIII2, in which compound NiII2LnIII2 containing diamagnetic NiII ion was used as the reference complex to evaluate the CuII-LnIII magnetic interaction. Comparison of the magnetic properties of the CuII2LnIII2 complex with those of the corresponding NiII2LnIII2 complex showed that the magnetic interaction between CuII and EuIII ions is weakly ferromagnetic and that between CuII and either of GdIII, TbIII, and DyIII ions is ferromagnetic. Complex CuII2GdIII2, 4, has an S = 8 spin ground state, due to the ferromagnetic spin coupling between SGd = 7/2 and SCu = 1/2 with coupling constants of J1 = +3.1 cm-1 and J2 = +1.2 cm-1. The magnetic measurements showed that compounds 5 and 6, CuII2LnIII2 (LnIII = Tb, Dy), exhibit large magnetic moments and large magnetic anisotropy due to the LnIII ion.