The main objective of this work is to optimize welding parameters of AISI 430 FSS welds, focused to minimization of ferrite grains size using Taguchi’s design. Two input parameters of speed and welding current; were chosen to select the minimum grain size and to ascertain their effects on ferrite grain size. ANOVA method was used to evaluate the influence of varying factors on the overall quality of welds. Optimal combination of the parameters were be predicted by S/N analyses, it was accessed on employing an 80 A with 6mm/s. Experimental characterizations of optimum weld joint were performed by using tensile test assisted by image correlations, optical and electronic microscopy. As a result, welding speed had the main influence on grain size by 84.30%. Optimum welding parameter offered finest microstructure with low rate of martensite precipitates in both fusion zone and heat affected zone, and best combination of strength and ductility, it presented a homogeneous distribution of tensile stresses that caused a ductile fracture in base material. ,it is found that that optimized welding parameters permit to give greater resistance to corrosion, which exhibit a lower corrosion current, indicating that coarse ferrite grains are more susceptible to corrosion compared to fine grains.