Alpha-synuclein (α-syn) is a major component of Lewy bodies, which is a biomarker of Parkinson's disease (PD). It accumulates in substantia nigra pars compacta (SNpc) to form insoluble aggregates and cause neurotoxicity, which is often accompanied by iron deposition. We compared the iron reductase activity between monomeric α-syn (M-α-syn) and oligomeric α-syn (O-α-syn) and investigated the effect of α-syn on iron metabolism of BV2 microglia cells as well. α-syn had ferric reductase activity, and O-α-syn had stronger enzyme activity than M-α-syn. M-α-syn upregulated iron uptake protein, divalent metal transporter1 (DMT1) expression, and iron influx but did not regulate iron release protein ferroportin1 (FPN1) expression and iron efflux. O-α-syn elevated the expression of both DMT1 and FPN1 and thus increased the iron influx and efflux in BV2 microglial cells, but the expressions of iron regulatory protein1 (IRP1) and hypoxia-inducible factor 2α (HIF-2α) had no significant change. Moreover, both M-α-syn and O-α-syn could increase the mRNA expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in BV2 microglia cells. Both types of α-syn can activate microglia, which leads to increased expressions of proinflammatory factors. α-syn can affect DMT1 and FPN1 expressions in BV2 microglia cells, which might be through its ferric reductase activity.NEW & NOTEWORTHY The effects of monomeric α-syn (M-α-syn) and oligomeric α-syn (O-α-syn) on the iron metabolism of BV2 microglia cells were detected by exogenous α-syn treatment. This study provides a strong experimental basis for α-syn involvement in iron metabolism in microglia.
Read full abstract