A soluble monoheme c–type cytochrome c6 has been isolated from the cyanobacterium Anabaena PCC 7119. It is a basic protein, with a molecular mass of 9.7 kDa, which accepts electrons from Anabaena ferredoxin in the ferredoxin-NADP+reductase-dependent NADPH cytochrome c reductase activity assay. The turnover of the reaction has an optimum pH at 7.5. Flavodoxin can also replace ferredoxin in this assay, but with only 20% efficiency. Plastocyanin from Anabaena PCC 7119, as well as the c6 cytochromes from the green algae Chlorella fusca and Monoraphidium braunii are also shown to accept electrons from Anabaena ferredoxin. The reduction potential of cytochrome c6 at pH 6.7 was determined to be 338 mV and is pH dependent, with pKaox=8.4±0.1 and pKared≈9.5. The ferric and ferrous cytochrome forms and their pH equilibria have been studied using visible, EPR and 1H-NMR spectroscopies. The amino acid sequence and the visible and NMR spectroscopic data indicate that the heme iron has a methionine-histidine axial coordination in the pH range 5–11. However, the EPR data for the ferricytochrome are complex and show that in this pH range five distinct forms are present. Between pH 5 and 9 the spectrum is dominated by two rhombic species, with g–values at 2.94, 2.29, 1.43 and at 2.84, 2.34, 1.56, which interconvert with a pKa of 8.4. The NMR data also show a main interconversion between two cytochrome forms at this pH, which coincides with that determined from the pH dependence of the reduction potential. Both these forms were associated with a methionine-histidine heme-iron coordination by correlation with the visible and NMR spectral data, although having crystal field parameters atypical for this type of coordination. Anabaena cytochrome c6 is one more example of a heme protein for which the widely used crystal field analysis of the EPR data (truth diagram) fails to unequivocally determine the type of heme-iron ligation.