The Bradyrhizobium japonicum fixX gene was identified and shown to be essential for symbiotic and free-living, microaerobic nitrogen fixation. The fixX gene encodes a ferredoxin-like protein which may be involved in a redox process (electron transport?) essential for nitrogenase activity. This gene was localized downstream of fixC and its expression was dependent on the fixB promoter, providing evidence for the existence of a fixBCX operon. Mutagenesis and sequence analysis of the unusually long, 709bp leader region between the fixB promoter and the fixB structural gene did not reveal the presence of a nif or fix gene that was absolutely essential for nitrogen fixation. However, a short open reading frame (ORF) within this region encoding a polypeptide of 35 amino acids (ORF35) was shown to be efficiently translated. Chromosomal deletion of a 400bp DNA fragment covering ORF35 resulted in a three-fold reduction of the fixBCX mRNA level, which in turn also reduced the nitrogen fixation activity of this mutant. This suggests a possible post-transcriptional control mechanism for the expression of the fixBCX operon involving the stabilization of fixBCX mRNA by ribosomes actively translating ORF35.
Read full abstract