We suggest that small carbonaceous molecules (SCMs) may be the sources of the unidentified infrared bands (UIRs) and the underlying continuum. We show that the IR spectroscopy of ethylene oxide (EO, c-C2H4O) and cyclopropenylidene (CP, c-C3H2) closely correlates with the major UIR bands at 3.3, 6.2, 7.7, 8.6, and 11.2 μm, the often seen strong bands at 12.7 and 16.4 μm, as well as many minor features. The differences in band locations and shapes between laboratory EO absorption spectra and astrophysical UIR emission spectra are attributed to vibrational anharmonicity, Fermi resonance splitting of nearly degenerate vibration levels, and rotational envelope narrowing due to the low temperatures in space. The excitation mechanism is absorption of UV radiation, primarily Lyα, by SCMs. Photon trapping for this very optically thick transition enhances the absorption by several orders of magnitude. Our abundance analysis for NGC 7027 reveals that the SCM abundance, relative to H2, is ~3 × 10–9 which compares well to radio measurements of the CP abundance range of ~10–9-10–7. The origin of the UIR continuum is discussed in terms of emission from vibrationally and rotationally hot SCM UV photodissociation products and UV excitation of rotationally hot SCM species. Radio lines of CP have been seen in numerous astronomical objects, most displaying the UIR bands. EO is also seen, but in fewer objects, none displaying the UIR bands. We theorize that in UIR objects, EO is formed on, and primarily resides on, carbonaceous grains, precluding radio detection of rotational lines. We suggest laboratory experiments, astronomical observations, and theoretical investigations to further evaluate the SCM mechanism for the UIR bands and continuum.