Electrochemical semi-hydrogenation of alkynols to produce high-value alkenols is a green and sustainable approach. Although Pd can exhibit excellent semi-hydrogenation properties, its intrinsic mechanism still lacks in-depth study. Herein, a proton ionic liquid (PIL)-modified Pd metallene (Pdene@PIL) is synthesized for the electrocatalytic semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE). The PIL modification of Pdene@PIL resulted in an MBY conversion of 96.1% and MBE selectivity of 97.2%, respectively. Theoretical calculations indicate the electron transfer between Pdene and PIL, leading to easier adsorption of MBY on the Pd surface. The d-band center of Pdene@PIL shifts away from the Fermi level, which weakens the adsorption of over-hydrogenated intermediates. At the same time, the PIL modification facilitates the adsorption of surface-adsorbed hydrogen (H*ads) and inhibits the formation of subsurface-absorbed hydrogen (H*abs). In particular, the PIL modification optimizes Hads* coverage, reduces the reaction energy of the rate-determining step (C5H8O*-C5H9O*), and inhibits HER. The reduction of H*abs formation inhibits the transfer of Pd to PdHx and suppresses the over-hydrogenation. This work provides new insights into the modulation of H* to enhance the alkynol electrocatalytic semi-hydrogenation reaction (ESHR) process from the perspective of surface modification.
Read full abstract