The discovery of cosmic neutrinos of astrophysical origin by IceCube has started a new chapter in the field of Neutrino Astronomy. Noticeably, a small accumulation of events in the region near the Galactic Centre has been observed: a telescope in the Mediterranean Sea constitutes a great opportunity for the physics quest, since it offers a perfect complementarity to IceCube and, in particular, a better visibility of the Galactic Centre. ANTARES (Astronomy with a Neutrino Telescope and Abyss Environmental RESearch) is the first operational Cherenkov neutrino telescope in the Mediterranean Sea and the largest neutrino detector in the Northern hemisphere, covering an area of about 0.1 km2; located 40 km offshore Toulon, France, at a depth of 2475 m, it has been completed in June 2008 and it is currently taking data. It consists of a tri-dimensional array of 885 photo-multipliers tubes (PMTs), distributed in 12 lines. ANTARES has recently performed a search for an excess of high energy neutrinos in the direction of the Galactic Centre, close to the accumulation of the IceCube events, assuming both the hypotheses of a point-like and an extended neutrino source. The results of this search will be discussed in this contribution, together with other recent achievements of the experiment, as the search for point-like sources, the results on the diffuse flux of cosmic neutrino signal and the search for neutrino emission from the Fermi bubbles. ANTARES offers a first view of the Neutrino Sky from the Northern hemisphere; its successful operation and its promising results make more compelling the expectations for KM3NeT, the next generation neutrino experiment in the Mediterranean Sea.