Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.
Read full abstract