Microbial lipids produced from lignocellulosic biomass are sustainable alternative feedstock for biodiesel production. In this study, corn cobs were used as a carbon source for lipid production and growth of oleaginous yeast Trichosporon oleaginosus. Lignocellulosic biomass was subjected to alkali and acid pretreatment using sulfuric acid and sodium hydroxide under different temperatures, catalyst concentrations and treatment times. Pretreatment of corn cobs was followed by cellulase hydrolysis. Hydrolysis of alkali pretreated (2% NaOH at 50 °C for 6 h, 1% NaOH at 50 °C for 16 h, 2% NaOH at 121 °C for 1 h, 1% NaOH at 121 °C for 2 h) and acid pretreated (1% H2SO4 120 °C for 20 min, and 2% H2SO4 120 °C for 10 min) corn cobs resulted in more than 80% of the theoretical yield of glucose. The effect of substrate (5, 10, 15 and 20%, g g−1) and cellulase loading (15 and 30 Filter Paper Units per gram of glucan, FPU g−1) on fermentable sugar yield was also studied. The maximal glucose concentration of 81.64 g L−1 was obtained from alkali-pretreated corn cobs (2% NaOH at 50 °C for 6 h) at 20% substrate loading and 30 FPU of Cellic CTec2 g−1 of glucan. Enzymatic hydrolysates of pretreated biomasses and filtrates of lignocellulosic slurries obtained after pretreatment were used for growth and lipid synthesis by T. oleaginosus. The highest lipid concentration of 18.97 g L−1 was obtained on hydrolysate of alkali-pretreated corn cobs (with 1% NaOH at 50 °C for 16 h) using a 15% (g g−1) substrate loading and 15 FPU g−1 of cellulase loading. Significant lipid accumulation was also achieved using undetoxified filtrates of pretreated slurries as substrates. Results showed that pretreated corn cobs and undetoxified filtrates are suitable carbon sources for the growth and efficient accumulation of lipids in T. oleaginosus.
Read full abstract