Rat liver Golgi membranes contain two alpha 1,2-specific mannosidases (IA and IB) (Tulsiani, D. R. P., Hubbard, S. C., Robbins, P. W., and Touster, O. (1982) J. Biol. Chem. 257, 3660-3668). Mannosidase IA has now been purified to apparent homogeneity by detergent extraction and (NH4)2SO4 precipitation, followed by Sephacryl S-300, ion-exchange, and hydroxylapatite chromatography. The enzyme was homogeneous by nondenaturing polyacrylamide gel electrophoresis with different gel concentrations, and Ferguson plot analysis indicated an Mr of 230,000 for the native enzyme. Although electrophoresis under denaturing conditions generally gave a subunit Mr of 57,000, electrophoresis of less than 1 microgram of protein yielded a faint doublet of Mr 57,000 and 58,000. Thus, the enzyme appears to be a tetramer with four very similar subunits. The enzyme bound to concanavalin A-Sepharose 4B only when it was kept in contact with the lectin for 16 h. Endoglycosidase H treatment resulted in loss of its binding to the lectin, without leading to a detectable change in the size of the enzyme subunit. On electrophoretic gels, the enzyme gave a faint positive stain with periodic acid-Schiff's base. The enzyme contained about 0.9% hexose by direct analysis. It did not bind to affinity resins specific for neuraminic acid, galactose, or N-acetylglucosamine. All these studies suggest that the enzyme is a glycoprotein containing only one or two clusters of high mannose oligosaccharide. Mannosidase IA is active toward oligosaccharides containing alpha 1,2-linked mannosyl residues. [3H]Man9GlcNAc, [3H] Man8GlcNAc, [3H]Man7GlcNAc, and [3H]Man6GlcNAc are good substrates. Man9GlcNAc, the best substrate, yields Man8, Man7, and Man6 derivatives with structures suggesting that the sequence of release of mannose residues is rather specific. Immunoprecipitation studies using polyclonal antibody (IgG) prepared against homogeneous mannosidase IA cross-reacted with mannosidase IB, a result suggesting that these two enzymes share antigenic determinants. However, no cross-reactivity was observed with rat liver cytosolic and lysosomal alpha-D-mannosidases or with Golgi mannosidase II.