• All Solutions All Solutions
    • Editage

      One platform for all researcher needs

    • Paperpal

      AI-powered academic writing assistant

    • R Discovery

      Your #1 AI companion for literature search

    • Mind the Graph

      AI tool for graphics, illustrations, and artwork

    Unlock unlimited use of all AI tools with the Editage Plus membership.

    Explore Editage Plus
  • Support All Solutions
    discovery@researcher.life
Discovery Logo
Paper
Search Paper
Cancel
Ask R Discovery
Features
  • Top Papers
  • Library
  • audio papers link Audio Papers
  • translate papers link Paper Translation
  • translate papers link Chrome Extension
Explore

Content Type

  • Preprints
  • Conference Papers
  • Journal Articles

More

  • Research Areas
  • Topics
  • Resources

Fenestration Defects Research Articles

  • Share Topic
  • Share on Facebook
  • Share on Twitter
  • Share on Mail
  • Share on SimilarCopy to clipboard
Follow Topic R Discovery
By following a topic, you will receive articles in your feed and get email alerts on round-ups.
Overview
131 Articles

Published in last 50 years

Related Topics

  • Periodontal Fenestration
  • Periodontal Fenestration
  • Periodontal Defects
  • Periodontal Defects
  • Peri-implant Defects
  • Peri-implant Defects
  • Intrabony Defects
  • Intrabony Defects
  • Infrabony Defects
  • Infrabony Defects

Articles published on Fenestration Defects

Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
113 Search results
Sort by
Recency
Regeneration of rat periodontium by cementum protein 1-derived peptide.

Cementum protein 1 (CEMP1) has the capacity to promote differentiation of periodontal ligament (PDL) cells toward a cementoblastic phenotype in vitro and bone regeneration in vivo. In this study, we tested the capabilities of a synthetic cementum protein 1-derived peptide, MGTSSTDSQQAGHRRCSTSN (CEMP1-p1), to promote regeneration of periodontal structures in a periodontal fenestration defect in rats. Fenestration defects were created using an extra-oral approach in the buccal aspect of the mandibular first molar roots. Eighteen male Wistar rats were divided into three groups. Two controls (defects non-treated or defects treated with a gelatin matrix scaffold [GMS] only) and the experimental group treated with 5µg/dose of CEMP1-p1 embedded in GMS. After 28days, the animals were sacrificed, and the mandibles processed for histopathological examination. Expression of cementum proteins, cementum attachment protein (CAP), CEMP1, integrin binding sialoprotein (IBSP), and osteocalcin (OCN), was assessed using immunofluorescence. The formation of new cementum, bone, and PDL fibers were compared between control and experimental groups. The histological analysis revealed that the control group without any treatment new cementum or oriented PDL fibers were not observed. However, the presence of newly bone was detected. In the control group treated with GMS, new cementum formation was not detectable, the PDL fibers were oriented parallel to the longitudinal root axis, and new bone formation was observed. The experimental group showed deposit of acellular extrinsic fiber cementum (AEFC) in a lamellae-like feature with inserted Sharpey's fibers, formation of cellular mixed stratified cementum (CMSC) with the presence of cementocytes, and newly formed bone close to the cementum-enamel junction. Cementoblast cells adjacent to new cementum expressed CAP, CEMP1, IBSP, and OCN. These studies show that CEMP1-p1 promotes the formation of AEFC, CMSC, new PDL with Sharpey's fibers inserted in cementum and bone, thus providing strong evidence that the synthetic peptide CEMP1-p1 promotes periodontal regeneration in a rat fenestration model.

Read full abstract
  • Journal of Periodontal Research
  • Sep 12, 2021
  • Lía Hoz + 3
Cite
Save

Evaluation of a metal artifact reduction algorithm and an adaptive image noise optimization filter in the estimation of peri-implant fenestration defects using cone beam computed tomography: an in-vitro study.

The aim of this study is to assess the effects of metal artifact reduction (MAR) and adaptive image noise enhancer (AINO) in CBCT imaging on the detection accuracy of artificially created fenestration defects in proximity to titanium and zirconium implants in sheep jaw. Six zirconium and 10 titanium implants were planted on mandibular jaws of three sheep, and artificial defects were created. All images were obtained with a standard voxel size (0.150 mm3) and with 4 scan modes: (1) without MAR/without AINO; (2) with MAR/without AINO; (3) without MAR/with AINO; and (4) with MAR/with AINO during CBCT scanning. A total of 60 CBCT scans were produced. For all types of implants, intra- and inter-observer kappa values were the highest for MAR filter. The scan mode of with MAR filter was found to have the highest area under the curve (AUC), whereas the scan mode of without both MAR and AINO filters was found to have the lowest AUC values with statistical significance (p ≤ 0.05). Titanium implants were found to have higher AUC values than zirconium (p ≤ 0.05). Both MAR module and AINO filters enhance the accuracy of the detection of peri-implant fenestrations; however, the use of MAR filter solely can be recommended for detection of peri-implant fenestrations.

Read full abstract
  • Oral Radiology
  • Aug 13, 2021
  • Nilsun Bagis + 6
Cite
Save

A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration.

Periodontitis is a chronic inflammatory, bacteria-triggered disorder affecting nearly half of American adults. Although some level of tissue regeneration is realized, its low success in complex cases demands superior strategies to amplify regenerative capacity. Herein, highly ordered scaffolds are engineered via Melt ElectroWriting (MEW), and the effects of strand spacing, as well as the presence of a nanostructured fluorinated calcium phosphate (F/CaP) coating on the adhesion/proliferation, and osteogenic differentiation of human-derived periodontal ligament stem cells, are investigated. Upon initial cell-scaffold interaction screening aimed at defining the most suitable design, MEW poly(ε-caprolactone) scaffolds with 500µm strand spacing are chosen. Following an alkali treatment, scaffolds are immersed in a pre-established solution to allow for coating formation. The presence of a nanostructured F/CaP coating leads to a marked upregulation of osteogenic genes and attenuated bacterial growth. In vivo findings confirm that the F/CaP-coated scaffolds are biocompatible and lead to periodontal regeneration when implanted in a rat mandibular periodontal fenestration defect model. In aggregate, it is considered that this work can contribute to the development of personalized scaffolds capable of enabling tissue-specific differentiation of progenitor cells, and thus guide simultaneous and coordinated regeneration of soft and hard periodontal tissues, while providing antimicrobial protection.

Read full abstract
  • Advanced Healthcare Materials
  • Aug 3, 2021
  • Arwa Daghrery + 7
Open Access
Cite
Save

Inhibiting PHD2 in human periodontal ligament cells via lentiviral vector-mediated RNA interference facilitates cell osteogenic differentiation and periodontal repair.

Periodontal defect regeneration in severe periodontitis remains a challenging task in clinic owing to poor survival of seed cells caused by the remaining oxidative stress microenvironment. Recently, the reduction of prolyl hydroxylase domain-containing protein 2 (PHD2), a primary cellular oxygen sensor, has shown an incredible extensive effect on skeletal muscle tissue regeneration by improving cell resistance to reactive oxygen species, whereas its role in periodontal defect repair is unclear. Here, through lentivirus vector-mediated RNA interference, the PHD2 gene in human periodontal ligament cells (hPDLCs) is silenced, leading to hypoxia-inducible factor-1α stabilization in normoxia. In vitro, PHD2 silencing not only exhibited a satisfactory effect on cell proliferation, but also induced distinguished osteogenic differentiation of hPDLCs. Real-time polymerase chain reaction and Western blotting revealed significant up-regulation of osteocalcin, alkaline phosphatase (ALP), runt-related transcription factor 2, and collagen type I (COL I). Under oxidative stress conditions, COL I and ALP expression levels, suppressed by 100 μM H2 O2 , were elevated by PHD2-gene-silencing in hPDLCs. In vivo, periodontal fenestration defects were established in 18 female Sprague-Dawley rats aged 6wk old, followed by implantation of PHD2 silencing hPDLCs in situ for 21 d. Persistent and stable silencing of PHD2 in hPDLCs promoted better new bone formation according to microcomputed tomography 3D reconstruction and related bone parameter analysis. This work demonstrates the therapeutic efficiency of PHD2 gene interference in osteogenic differentiation and periodontal defect repair for highly efficient periodontal regeneration.

Read full abstract
  • Journal of leukocyte biology
  • May 14, 2021
  • Di Cui + 3
Open Access
Cite
Save

Delivery of Alkaline Phosphatase Promotes Periodontal Regeneration in Mice

Factors regulating the ratio of pyrophosphate (PPi) to phosphate (Pi) modulate biomineralization. Tissue-nonspecific alkaline phosphatase (TNAP) is a key promineralization enzyme that hydrolyzes the potent mineralization inhibitor PPi. The goal of this study was to determine whether TNAP could promote periodontal regeneration in bone sialoprotein knockout mice (Ibsp−/− mice), which are known to have a periodontal disease phenotype. Delivery of TNAP was accomplished either systemically (through a lentiviral construct expressing a mineral-targeted TNAP-D10 protein) or locally (through addition of recombinant human TNAP to a fenestration defect model). Systemic TNAP-D10 delivered by intramuscular injection at 5 d postnatal (dpn) increased circulating alkaline phosphatase (ALP) levels in Ibsp−/− mice by 5-fold at 30 dpn, with levels returning to normal by 60 dpn when tissues were evaluated by micro–computed tomography and histology. Local delivery of recombinant human TNAP to fenestration defects in 5-wk-old wild type (WT) and Ibsp−/− mice did not alter long-term circulating ALP levels, and tissues were evaluated by micro–computed tomography and histology at postoperative day 45. Systemic and local delivery of TNAP significantly increased alveolar bone volume (20% and 37%, respectively) and cementum thickness (3- and 42-fold) in Ibsp−/− mice, with evidence for periodontal ligament attachment and bone/cementum marker localization. Local delivery significantly increased regenerated cementum and bone in WT mice. Addition of 100-μg/mL bovine intestinal ALP to culture media to increase ALP in vitro increased media Pi concentration, mineralization, and Spp1 and Dmp1 marker gene expression in WT and Ibsp−/− OCCM.30 cementoblasts. Use of phosphonoformic acid, a nonspecific inhibitor of sodium Pi cotransport, indicated that effects of bovine intestinal ALP on mineralization and marker gene expression were in part through Pi transport. These findings show for the first time through multiple in vivo and in vitro approaches that pharmacologic modulation of Pi/PPi metabolism can overcome periodontal breakdown and accomplish regeneration.

Read full abstract
  • Journal of Dental Research
  • Apr 10, 2021
  • A Nagasaki + 7
Open Access
Cite
Save

Comparison of the effectiveness of Ankaferd Blood Stopper® and Emdogain in periodontal regeneration.

The present study was performed to compare the effectiveness of Ankaferd Blood Stopper® (ABS) with enamel matrix derivatives (EMD) for treating fenestration defects in rats. Forty-eight male Wistar rats were randomly divided into six groups (each n=8). Fenestration defects were created in all rats, to which ABS, EMD, or saline (S) was then applied. The rats were grouped and sacrificed at one of two different time points, as follows: ABS-10-group, ABS-treatment/sacrifice on day 10; EMD-10-group, EMD-treatment/sacrifice on day 10; S-10-group, S-treatment/sacrifice on day 10; ABS-38-group, ABS-treatment/sacrifice on day 38; EMD-38-group, EMD-treatment/sacrifice on day 38; and S-38-group, S-treatment/sacrifice on day 38. Then, histomorphometric analysis including measurements of new bone area (NBA) and new bone ratio (NBR), and immunohistochemical analysis including the determination of osteopontin (OPN) and type-III-collagen (C-III) expression were performed. The NBA and NBR were significantly higher in the ABS-10-group and EMD-10-group compared to the S-10-group (p<.05), and in the EMD-38-group compared to the S-38-group (p<.05). The levels of C-III and OPN immunoreactivity were significantly higher in the ABS-10-group compared to the S-10-group (p<.017). The results of this study suggested that ABS can promote early periodontal regeneration, although its efficacy seems to decrease over time.

Read full abstract
  • Oral Diseases
  • Apr 1, 2021
  • Şevki Güler + 4
Cite
Save

Fenestration and dehiscence frequency in maxillary teeth with apical periodontitis: a CBCT study

Introduction: to determine the frequency of fenestration and dehiscence bone defects present in maxillary teeth with apical periodontitis, mainly in teeth with endodontic treatment, as they are frequently cause of nonspecific symptoms after treatment. Methods: 1201 Maxillary Cone Beam Computed Tomography (CBCT) exams were analyzed and 803 teeth with apical periodontitis were selected. Results: of the teeth with apical periodontitis, 142 had a fenestration defect (18%) of which 105 teeth (74%) were endodontically treated. The highest frequency was observed in premolars, with no statistical differences between groups. Dehiscence defect was found in 139 teeth (17%) out of which 90 (65%) were endodontically treated. The highest frequency was observed in molars, with statistical differences in relation to other tooth types (p&lt; 0.001). Conclusion: an important number of teeth with apical periodontitis present dehiscence or fenestration bone defects, especially in teeth with root canal treatment.

Read full abstract
  • Revista Facultad de Odontología
  • Feb 5, 2021
  • Héctor Monardes + 4
Open Access
Cite
Save

Diagnostic accuracy of imaging examinations for peri-implant bone defects around titanium and zirconium dioxide implants: A systematic review and meta-analysis.

PurposeThis systematic review and meta-analysis assessed the diagnostic accuracy of imaging examinations for the detection of peri-implant bone defects and compared the diagnostic accuracy between titanium (Ti) and zirconium dioxide (ZrO2) implants.Materials and MethodsSix online databases were searched, and studies were selected based on eligibility criteria. The studies included in the systematic review underwent bias and applicability assessment using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and a random-effect meta-analysis. Summary receiver operating characteristic (sROC) curves were constructed to compare the effect of methodological differences in relation to the variables of each group.ResultsThe search strategy yielded 719 articles. Titles and abstracts were read and 61 studies were selected for full-text reading. Among them, 24 studies were included in this systematic review. Most included studies had a low risk of bias (QUADAS-2). Cone-beam computed tomography (CBCT) presented sufficient data for quantitative analysis in ZrO2 and Ti implants. The meta-analysis revealed high levels of inconsistency in the latter group. Regarding sROC curves, the area under the curve (AUC) was larger for the overall Ti group (AUC=0.79) than for the overall ZrO2 group (AUC=0.69), but without a statistically significant difference between them. In Ti implants, the AUCs for dehiscence defects (0.73) and fenestration defects (0.87) showed a statistically significant difference.ConclusionThe diagnostic accuracy of CBCT imaging in the assessment of peri-implant bone defects was similar between Ti and ZrO2 implants, and fenestration was more accurately diagnosed than dehiscence in Ti implants.

Read full abstract
  • Imaging Science in Dentistry
  • Jan 1, 2021
  • Mariana Murai Chagas + 3
Open Access
Cite
Save

Ablation of Pyrophosphate Regulators Promotes Periodontal Regeneration

Biomineralization is regulated by inorganic pyrophosphate (PPi), a potent physiological inhibitor of hydroxyapatite crystal growth. Progressive ankylosis protein (ANK) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) act to increase local extracellular levels of PPi, inhibiting mineralization. The periodontal complex includes 2 mineralized tissues, cementum and alveolar bone (AB), both essential for tooth attachment. Previous studies demonstrated that loss of function of ANK or ENPP1 (reducing PPi) resulted in increased cementum formation, suggesting PPi metabolism may be a target for periodontal regenerative therapies. To compare the effects of genetic ablation of Ank, Enpp1, and both factors concurrently on cementum and AB regeneration, mandibular fenestration defects were created in Ank knockout (Ank KO), Enpp1 mutant (Enpp1asj/asj), and double KO (dKO) mice. Genetic ablation of Ank, Enpp1, or both factors increased cementum regeneration compared to controls at postoperative days (PODs) 15 and 30 (Ank KO: 8-fold, 3-fold; Enpp1asj/asj: 7-fold, 3-fold; dKO: 11-fold, 4-fold, respectively) associated with increased fluorochrome labeling and expression of mineralized tissue markers, dentin matrix protein 1 (Dmp1/DMP1), osteopontin (Spp1/OPN), and bone sialoprotein (Ibsp/BSP). Furthermore, dKO mice featured increased cementum thickness compared to single KOs at POD15 and Ank KO at POD30. No differences were noted in AB volume between genotypes, but osteoblast/osteocyte markers were increased in all KOs, partially mineralized osteoid volume was increased in dKO versus controls at POD15 (3-fold), and mineral density was decreased in Enpp1asj/asj and dKOs at POD30 (6% and 9%, respectively). Increased numbers of osteoclasts were present in regenerated AB of all KOs versus controls. These preclinical studies suggest PPi modulation as a potential and novel approach for cementum regeneration, particularly targeting ENPP1 and/or ANK. Differences in cementum and AB regeneration in response to reduced PPi conditions highlight the need to consider tissue-specific responses in strategies targeting regeneration of the entire periodontal complex.

Read full abstract
  • Journal of Dental Research
  • Dec 24, 2020
  • A Nagasaki + 8
Open Access
Cite
Save

Guided bone regeneration.

Guided bone regeneration (GBR) is a surgical procedure that utilizes bone grafts with barrier membranes to reconstruct small defects around dental implants. This procedure is commonly deployed on dehiscence or fenestration defects ≥2 mm, and mixing with autogenous bone is recommended on larger defects. Tension-free primary closure is a critical factor to prevent wound dehiscence, which is critical cause of GBR failure. A barrier membrane should be rigidly fixed without mobility. If the barrier is exposed, closed monitoring should be utilized to prevent secondary infection.

Read full abstract
  • Journal of the Korean Association of Oral and Maxillofacial Surgeons
  • Oct 31, 2020
  • Young-Kyun Kim + 1
Open Access
Cite
Save

Comparison of the different voxel sizes in the estimation of peri-implant fenestration defects using cone beam computed tomography: an ex vivo study

BackgroundTo examine the influence of voxel sizes to detect of peri-implant fenestration defects on cone beam computed tomography (CBCT) images.Materials and methodsThis study performed with three sheep heads both maxilla and mandible and two types of dental implant type 1 zirconium implant (Zr40) (n = 6) and type 2 titanium implant (Ti22) (n = 10). A total of 14 peri-implant fenestrations (8 buccal surfaces, 6 palatal/lingual surface) were created while 18 surfaces (8 buccal, 10 palatal/lingual) were free of fenestrations. Three observers have evaluated the images of fenestration at each site. Images obtained with 0.75 mm3, 0.100 mm3, 0.150 mm3, 0.200 mm3, and 0.400 mm3 voxel sizes. For intra- and inter-observer agreements for each voxel size, Kappa coefficients were calculated.ResultsIntra- and inter-observer kappa values were the highest for 0.150 mm3, and the lowest in 0.75 mm3 and 0.400 mm3 voxel sizes for all types of implants. The highest area under the curve (AUC) values were found higher for the scan mode of 0.150 mm3, whereas lower AUC values were found for the voxel size for 0.400 mm3. Titanium implants had higher AUC values than zirconium with the statistical significance for all voxel sizes (p ≤ 0.05).ConclusionA voxel size of 0.150 mm3 can be used to detect peri-implant fenestration bone defects. CBCT is the most reliable diagnostic tool for peri-implant fenestration bone defects.

Read full abstract
  • International Journal of Implant Dentistry
  • Oct 2, 2020
  • Mehmet Hakan Kurt + 4
Open Access
Cite
Save

Implant etrafı defektlerin kapatılmasında bistüri tekniğiyle elde edilen otojen kemik tabakaları güvenilir mi?

Background: The aim of this study is to present a very easy technique for coverage of dehiscence and fenestration defects around the dental implantsfrom the nearest bone source by using a sharp scalpel and the analysis of its clinical results.Materials and Methods:750 screw dental implants were inserted by the same surgeon. Exactly 112 of the (15%) implants had dehiscence defects and 23 of them (3 %) had fenestration defects. A bone sheet was obtained from the nearest available cortical bone for covering a bone defect around an implant by using a new no: 15 scalpel. Survival rates of implants were evaluated.Results:One hundred and thirty-five exposed implant surfaces were augmented with autogenous bone, harvested by scalpel technique. The survival rate of these implants was 100% with no significant clinical finding.Conclusion:The scalpel technique described in the present study is easy, effective and reliable for the management of dehiscence or fenestration defects of dental implants.Key words: Autogenous bone grafting, defects around dental implants, dental implants

Read full abstract
  • Selcuk Dental Journal
  • Apr 1, 2020
  • Burak Bayram
Open Access
Cite
Save

Gingival Fenestration: A Multidisciplinary Approach

Gingival fenestration is rarely encountered clinical situation causing problems like root sensitivity, root caries and aesthetic problem. Although rare, this situation can be difficult to manage and needs multidisciplinary approach. This case report describes management of gingival fenestration defect with root exposure and endodontic lesion in upper left lateral incisor using multidisciplinary approach. Endodontic treatment followed by double papilla flap technique as coverage of gingival fenestration and finally crown was prosthetically rehabilitated. The result of this case with double papilla graft technique demonstrated satisfactory healing of the gingival fenestration defect with excellent colour and texture match with the surrounding tissues.

Read full abstract
  • Journal of Nepalese Society of Periodontology and Oral Implantology
  • Dec 31, 2019
  • Ameena Pradhan + 3
Open Access
Cite
Save

Is periodontal phenotype modification therapy beneficial for patients receiving orthodontic treatment? An American Academy of Periodontology best evidence review.

Orthodontic treatment can greatly impact the periodontium, especially in dentitions with a thin periodontal phenotype. Orthodontic tooth movement can result into iatrogenic sequelae to these vulnerable anatomic conditions, such as development and exacerbation of bony dehiscence or fenestration defects, which can manifest loss of periodontal support and gingival recession (GR). This systematic review aimed to investigate whether periodontal phenotype modification therapy (PhMT) involving hard tissue augmentation (PhMT-b) or soft tissue augmentation (PhMT-s) has clinical benefits for patients undergoing orthodontic treatment. An electronic search was performed in two major databases for journals published in English language from January 1975 to January 2019 and a hand search of printed journals was also performed to identify human clinical trials reporting clinical and radiographic outcomes of patients receiving orthodontic treatment with or without hard and soft tissue augmentation procedures. Data were extracted and organized into tables for qualitative assessment. Eight studies were identified evaluating the outcomes of PhMT in patients undergoing orthodontic therapy. Six studies evaluated patients receiving PhMT-b via corticotomy-assisted orthodontic therapy (CAOT) and simultaneous bone augmentation while the other two received PhMT-s before tooth movement. No studies investigated PhMT-b alone without CAOT and most studies focused on the mandibular anterior decompensation movements. There was high heterogeneity in the study design and inconsistency of the reported outcomes; therefore, a meta-analysis was not performed. Evidence at this moment supports CAOT with hard tissue augmentation accelerated tooth movement. However, only two studies provided direct comparison to support that CAOT with PhMT-b reduced the overall treatment time compared with conventional orthodontic treatment. No periodontal complications or evidence of severe root resorption were reported for both groups. Four studies provided radiographic assessment of the PhMT-b and demonstrated increased radiographic density or thicker facial bone after the treatment. Two studies reported an expanded tooth movement. One study reported an increase in keratinized tissue width post-CAOT plus PhMT-b, while another study with a 10-year follow-up showed a lower degree of relapse using the mandibular irregularity index when compared with conventional tooth movement alone. Two studies examined the effect of PhMT-s before orthodontic treatment. Unfortunately, no conclusions can be drawn because of the limited number of studies with contradicting outcomes. Within the limited studies included in this systematic review, PhMT-b via particulate bone grafting together with CAOT may provide clinical benefits such as modifying periodontal phenotype, maintaining or enhancing facial bone thickness, accelerating tooth movement, expanding the scope of safe tooth movement for patients undergoing orthodontic tooth movement. The benefits of PhMT-s alone for orthodontic treatment remain undetermined due to limited studies available. However, PhMT-b appears promising and with many potential benefits for patients undergoing orthodontic tooth movement. There is a need for a higher quality of randomized controlled trials or case control studies with longer follow-up to investigate the effects of different grafting materials and surgical sites other than mandibular anterior region.

Read full abstract
  • Journal of Periodontology
  • Nov 26, 2019
  • Chin‐Wei Wang + 3
Open Access
Cite
Save

The efficacy of metal artifact reduction (MAR) algorithm in cone-beam computed tomography on the diagnostic accuracy of fenestration and dehiscence around dental implants.

The aim of the present study was to investigate the impact of metal artifact reduction (MAR) algorithm of cone-beam computed tomography (CBCT) on the diagnostic accuracy of fenestration and dehiscence around dental implants. Twenty-three dental implants were placed adjacent to the dehiscence and 23 adjacent to the fenestration defects on bovine bone blocks. The blocks were scanned with CBCT unit in two modes, with and without MAR algorithm. The area under the receiver operator characteristic (ROC) curves (Az value), specificity, sensitivity, positive predictive value, negative predictive value, and accuracy were determined for all modes. For both defects, the Az values were higher in off MAR condition. The values of sensitivity, positive predictive value, negative predictive value, and accuracy, were higher in off MAR condition for both defects. However, the specificity in both defects in the two modes was equal. The MAR algorithm in CBCT unit may not be helpful in increasing the diagnostic accuracy of fenestration and dehiscence around dental implants.

Read full abstract
  • Journal of Periodontology
  • Aug 28, 2019
  • Mahnaz Sheikhi + 3
Cite
Save

Evaluation of the effectiveness of using platelet rich fibrin (PRF) as a sole grafting material and membrane in augmentation of dehiscence and fenestration defects encountered during dental implant surgery

Background: Bone regeneration in dehiscence and fenestration defect can be improved with the use of platelet rich fibrin (PRF) that provides a scaffold for new bone regeneration. This study was conducted to assess the effectiveness of PRF as a graft material and membrane in dehiscence and fenestration defects. Materials and Methods: This prospective clinical study included patients who received dental implants that demonstrated peri-implant defects which were augmented using Leukocyte- PRF (L-PRF) or Advanced-PRF (A-PRF). Twenty four weeks postoperatively the defect resolution and the density of regenerated bone were assessed by CBCT and re-entry surgery. The assessment also included measurement of primary and secondary implant stability using Periotest® M, success rate and complication rate of the installed implants. Results: The mean overall intraoperative defect size was 29.44 (± 14.1) mm2, postoperatively it became 2.07 (± 3.6) mm2 with a statistically significant difference (p= &lt; 0.0001). There was no significant difference between L-PRF and A-PRF. Defect resolution ranged from 80% to 100% with a mean of 95.7% (± 6.7%). Defects that showed complete resolution were significantly smaller in size (21.2± 7 mm2) than those that showed partial resolution (44.4± 11 mm2). The overall mean primary stability recorded was 2.9 (± 1.6) Periotest values (PTV) and overall mean secondary stability was -0.22 (±1.4) (P&lt;0.0001).The overall mean HU of the newly formed peri-implant bone was 385.7 (± 77.4). Conclusions: PRF as the sole graft material for peri-implant defects results in complete defect resolution in small to moderate defects, larger defects may require the addition of bone substitute to achieve complete defect resolution.

Read full abstract
  • Journal of Baghdad College of Dentistry
  • Jun 15, 2019
  • Ahmed M Abbas + 2
Open Access
Cite
Save

Detection of peri-implant bone defects using cone-beam computed tomography and digital periapical radiography with parallel and oblique projection

PurposeTo compare the diagnostic accuracy of cone-beam computed tomography (CBCT) with that of parallel (PPA) and oblique projected periapical (OPA) radiography for the detection of different types of peri-implant bone defects.Materials and MethodsForty implants inserted into bovine rib blocks were used. Thirty had standardized bone defects (10 each of angular, fenestration, and dehiscence defects), and 10 were defect-free controls. CBCT, PPA, and OPA images of the samples were acquired. The images were evaluated twice by each of 2 blinded observers regarding the presence or absence and the type of the defects. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were determined for each radiographic technique. The 3 modalities were compared using the Fisher exact and chi-square tests, with P<0.05 considered as statistical significance.ResultsHigh inter-examiner reliability was observed for the 3 techniques. Angular defects were detected with high sensitivity and specificity by all 3 modalities. CBCT and OPA showed similar AUC and sensitivity in the detection of fenestration defects. In the identification of dehiscence defects, CBCT showed the highest sensitivity, followed by OPA and PPA, respectively. CBCT and OPA had a significantly greater ability than PPA to detect fenestration and dehiscence defects (P<0.05).ConclusionThe application of OPA radiography in addition to routine PPA imaging as a radiographic follow-up method for dental implantation greatly enhances the visualization of fenestration and dehiscence defects. CBCT properly depicted all defect types studied, but it involves a relatively high dose of radiation and cost.

Read full abstract
  • Imaging Science in Dentistry
  • Jan 1, 2019
  • Bardia Vadiati Saberi + 3
Open Access
Cite
Save

An In Vivo and Cone Beam Computed Tomography Investigation of the Accuracy in Measuring Alveolar Bone Height and Detecting Dehiscence and Fenestration Defects.

To investigate cone beam computed tomography (CBCT) accuracy in measuring facial bone height and detecting dehiscence and fenestration defects around teeth. Patients who were treatment planned for periodontal flap or dental implant surgeries were enrolled (n = 25). CBCT imaging (Carestream CS 9300) was obtained at 0.09-mm voxels (n = 10 patients, 23 teeth) and at 0.18-mm voxels (n = 15 patients, 33 teeth). Facial bone height measurements, from cusp tip to crest of bone height along the long axis of the tooth, and presence or absence of dehiscence or fenestration defects were recorded from CBCT images in triplicates independently by two examiners. The corresponding clinical measurements were made at the time of surgery. Comparisons of CBCT and clinical measurements were made using paired t tests for teeth: anterior and posterior, maxillary and mandibular, with or without restorations, or root canal therapy. Level of agreement between investigators was assessed by concordance correlation coefficients (CCC), Pearson's correlation coefficient (PCC), and Cohen's Kappa. Comparing mean CBCT and clinical measurements, statistically significant differences were noted for 0.09-mm and 0.18-mm voxel sizes, for anterior and posterior teeth, for maxillary and mandibular teeth, for teeth with or without restorations, and for teeth without root canal therapy (P < .05). Clinical and CBCT measurements were similar for teeth with crowns and with root canal therapy (P > .05). CBCT measurements underestimated mean facial bone height from 0.33 ± 0.78 to 0.88 ± 1.14 mm (mean ± SD) and absolute facial bone height values from 0.56 ± 0.35 to 1.08 ± 0.92 mm. Intraexaminer and interexaminer reliability for measuring facial bone height ranged from poor to substantial (PCC = 0.78 to 0.97 and CCC = 0.63 to 0.96, respectively). Interexaminer reliability for detection of dehiscence and fenestration defects ranged from poor to moderate (Cohen's Kappa = -0.09 to 0.66). CBCT imaging underestimated facial bone height and overestimated the presence of dehiscence and fenestration defects.

Read full abstract
  • The International Journal of Oral &amp; Maxillofacial Implants
  • Nov 1, 2018
  • Andrew Peterson + 5
Cite
Save

PC164: Treatment of fenestration defect by apical resection and sub‐epithelial connective tissue graft combined with platelet‐rich fibrin

PC164: Treatment of fenestration defect by apical resection and sub‐epithelial connective tissue graft combined with platelet‐rich fibrin

Read full abstract
  • Journal of Clinical Periodontology
  • Jun 1, 2018
Open Access
Cite
Save

Diagnostic performance of cone beam computed tomography in assessing peri-implant bone loss: A systematic review.

To evaluate the diagnostic performance of cone beam computed tomography (CBCT) in the assessment of peri-implant bone loss and analyze its influencing factors. Clinical and preclinical studies reporting diagnostic outcomes of CBCT imaging of peri-implant bone loss compared to direct reference measurements were sought by searching five electronic databases, PubMed, MEDLINE, EMBASE, Web of Science, and CINAHL Plus, and OpenGrey. QUADAS-2 criteria were adapted for quality analysis of the included studies. A qualitative synthesis was performed. Two meta-analysis models (random-effects and mixed-effects) summarized the area under receiver operating characteristic (AUC) curve observations reported in the selected studies. The mixed-effects meta-analysis model evaluated three possible influencing factors, "defect type," "defect size," and "study effect." The initial search yielded 3,716 titles, from which 18 studies (13 in vitro and 5 animal) were included. Diagnostic accuracy of CBCT was fair to excellent in detecting in vitro circumferential-intrabony and fenestration defects, but moderate to low for peri-implant dehiscences, and tended to be higher for larger defect sizes. Both, over- and underestimation of linear measurements were reported for the animal models. The meta-analyses included 37 AUC observations from eight studies. The random-effects model showed significant heterogeneity. The mixed-effects model exhibited also significant but lower heterogeneity, and "defect type" and "study effect" significantly influenced the variability of AUC observations. In vitro, CBCT performs well in detecting peri-implant circumferential-intrabony or fenestration defects but less in depicting dehiscences. Influencing factors due to other site-related and technical parameters on the diagnostic outcome need to be addressed further in the future studies.

Read full abstract
  • Clinical Oral Implants Research
  • Mar 26, 2018
  • Georgios Pelekos + 3
Cite
Save

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5

Popular topics

  • Latest Artificial Intelligence papers
  • Latest Nursing papers
  • Latest Psychology Research papers
  • Latest Sociology Research papers
  • Latest Business Research papers
  • Latest Marketing Research papers
  • Latest Social Research papers
  • Latest Education Research papers
  • Latest Accounting Research papers
  • Latest Mental Health papers
  • Latest Economics papers
  • Latest Education Research papers
  • Latest Climate Change Research papers
  • Latest Mathematics Research papers

Most cited papers

  • Most cited Artificial Intelligence papers
  • Most cited Nursing papers
  • Most cited Psychology Research papers
  • Most cited Sociology Research papers
  • Most cited Business Research papers
  • Most cited Marketing Research papers
  • Most cited Social Research papers
  • Most cited Education Research papers
  • Most cited Accounting Research papers
  • Most cited Mental Health papers
  • Most cited Economics papers
  • Most cited Education Research papers
  • Most cited Climate Change Research papers
  • Most cited Mathematics Research papers

Latest papers from journals

  • Scientific Reports latest papers
  • PLOS ONE latest papers
  • Journal of Clinical Oncology latest papers
  • Nature Communications latest papers
  • BMC Geriatrics latest papers
  • Science of The Total Environment latest papers
  • Medical Physics latest papers
  • Cureus latest papers
  • Cancer Research latest papers
  • Chemosphere latest papers
  • International Journal of Advanced Research in Science latest papers
  • Communication and Technology latest papers

Latest papers from institutions

  • Latest research from French National Centre for Scientific Research
  • Latest research from Chinese Academy of Sciences
  • Latest research from Harvard University
  • Latest research from University of Toronto
  • Latest research from University of Michigan
  • Latest research from University College London
  • Latest research from Stanford University
  • Latest research from The University of Tokyo
  • Latest research from Johns Hopkins University
  • Latest research from University of Washington
  • Latest research from University of Oxford
  • Latest research from University of Cambridge

Popular Collections

  • Research on Reduced Inequalities
  • Research on No Poverty
  • Research on Gender Equality
  • Research on Peace Justice & Strong Institutions
  • Research on Affordable & Clean Energy
  • Research on Quality Education
  • Research on Clean Water & Sanitation
  • Research on COVID-19
  • Research on Monkeypox
  • Research on Medical Specialties
  • Research on Climate Justice
Discovery logo
FacebookTwitterLinkedinInstagram

Download the FREE App

  • Play store Link
  • App store Link
  • Scan QR code to download FREE App

    Scan to download FREE App

  • Google PlayApp Store
FacebookTwitterTwitterInstagram
  • Universities & Institutions
  • Publishers
  • R Discovery PrimeNew
  • Ask R Discovery
  • Blog
  • Accessibility
  • Topics
  • Journals
  • Open Access Papers
  • Year-wise Publications
  • Recently published papers
  • Pre prints
  • Questions
  • FAQs
  • Contact us
Lead the way for us

Your insights are needed to transform us into a better research content provider for researchers.

Share your feedback here.

FacebookTwitterLinkedinInstagram

Copyright 2024 Cactus Communications. All rights reserved.

Privacy PolicyCookies PolicyTerms of UseCareers