The ultrafast dynamics of clusters of trans-azobenzene anion (A-) solvated by oxygen molecules was investigated using femtosecond time-resolved photoelectron spectroscopy. The time scale for stripping off all oxygen molecules from A- was determined by monitoring in real time the transient of the A- rise, following an 800 nm excitation of A- (O2)n, where n = 1-4. A careful analysis of the time-dependent photoelectron spectra strongly suggests that for n > 1 a quasi-O4 core is formed and that the dissociation occurs by a bond cleavage between A- and conglomerated (O2)n rather than a stepwise evaporation of O2. With time and energy resolutions, we were able to capture the photoelectron signatures of transient species which instantaneously rise (<100 fs) then decay. The transient species are assigned as charge-transfer complexes: A.O2- for A- O2 and A.O4-(O2)n-2 for A-(O2)n, where n = 2-4. Subsequent to an ultrafast electron recombination, A- rises with two distinct time scales: a subpicosecond component reflecting a direct bond rupture of the A- -(O2)n nuclear coordinate and a slower component (1.6-36 ps, increasing with n) attributed to an indirect channel exhibiting a quasistatistical behavior. The photodetachment transients exhibit a change in the transition dipole direction as a function of time delay. Rotational dephasing occurs on a time scale of 2-3 ps, with a change in the sign of the transient anisotropy between A- O2 and the larger clusters. This behavior is a key indicator of an evolving cluster structure and is successfully modeled by calculations based on the structures and inertial motion of the parent clusters.
Read full abstract