The assembly of the complex iron-molybdenum cofactor (FeMoco) of nitrogenase molybdenum-iron (MoFe) protein has served as one of the central topics in the field of bioinorganic chemistry for decades. Here we examine the role of a MoFe protein residue (His alpha362) in FeMoco insertion, the final step of FeMoco biosynthesis where FeMoco is incorporated into its binding site in the MoFe protein. Our data from combined metal, activity and electron paramagnetic resonance analyses show that mutations of His alpha362 to small uncharged Ala or negatively charged Asp result in significantly reduced FeMoco accumulation in MoFe protein, indicating that His alpha362 plays a key role in the process of FeMoco insertion. Given the strategic location of His alpha362 at the entry point of the FeMoco insertion funnel, this residue may serve as one of the initial docking points for FeMoco insertion through transient ligand coordination and/or electrostatic interaction.
Read full abstract