The European common lizard, Zootoca vivipara, is the most widespread terrestrial reptile in the world. It occupies almost the entire Northern Eurasia and includes four viviparous and two oviparous lineages. We analysed how female snout-vent length (SVL), clutch size (CS), hatchling mass (HM), and relative clutch mass (RCM) is associated with the reproductive mode and climate throughout the species range and across the evolutionary lineages within Z. vivipara. The studied variables were scored for 1,280 females and over 3,000 hatchlings from 44 geographically distinct study samples. Across the species range, SVL of reproductive females tends to decrease in less continental climates, whereas CS corrected for female SVL and RCM tend to decrease in climates with cool summer. Both relationships are likely to indicate direct phenotypic responses to climate. For viviparous lineages, the pattern of co-variation between female SVL, CS and HM among populations is similar to that between individual females within populations. Consistent with the hypothesis that female reproductive output is constrained by her body volume, the oviparous clade with shortest retention of eggs in utero showed highest HM, the oviparous clade with longer egg retention showed lower HM, and clades with the longest egg retention (viviparous forms) had lowest HM. Viviparous populations exhibited distinctly lower HM than the other European lacertids of similar female SVL, many of them also displaying unusually high RCM. This pattern is consistent with Winkler and Wallin’s model predicting a negative evolutionary link between the total reproductive investment and allocation to individual offspring.
Read full abstract