The aromatase knockout (ArKO) mouse cannot synthesize endogenous estrogens due to disruption of the Cyp19 gene. We have shown previously, that ArKO mice present with age-progressive obesity and hepatic steatosis, and by 1 yr of age both male and female ArKO mice develop hypercholesterolemia. In this present study 10- to 12-wk-old ArKO mice were challenged for 90 d with high cholesterol diets. Our results show a sexually dimorphic response to estrogen deficiency in terms of cholesterol homeostasis in the liver. ArKO females presented with elevated serum cholesterol; conversely, ArKO males had elevated hepatic cholesterol levels. In response to dietary cholesterol, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase transcript levels were significantly reduced in females, whereas males showed more modest changes. Neither low density lipoprotein nor sterol regulatory element-binding protein expression levels were significantly altered by diet or genotype. The expression of Cyp7a, which encodes cholesterol 7 alpha-hydroxylase, was significantly reduced in ArKO females compared with wild-type females and was increased by cholesterol feeding. Cyp7a expression was significantly elevated in the wild-type males on the high cholesterol diet, although no difference was seen between genotypes on the control diet. The ATP-binding cassette G5 and ATP-binding cassette G8 transporters do not appear to be regulated by estrogen. The expression of acyl-coenzyme A:cholesterol acyltransferase 2 showed a sexually dimorphic response, where estrogen appeared to have a stimulatory effect in females, but not males. This study reveals a sexually dimorphic difference in mouse hepatic cholesterol homeostasis and roles for estrogen in the regulation of cholesterol uptake, biosynthesis, and catabolism in the female, but not in the male.