Merkel cell carcinoma (MCC) is a cutaneous neuroendocrine tumor, and more than 90% of feline MCC cases test positive for Felis catus papillomavirus type 2 (FcaPV2). In the present study, basal cell markers p40, p63, and p73 and the stem cell marker SOX2 and cytokeratin 14 (CK14) were immunohistochemically examined in normal fetal, infant, and adult feline skin tissues. The expression of these proteins was examined in tumors positive for FcaPV2, including MCC, basal cell carcinoma (BCC), Bowenoid in situ carcinoma (BISC), and squamous cell carcinoma (SCC). Infant and adult feline skin tissues had mature Merkel cells, which were CK14-, CK18+, CK20+, SOX2+, synaptophysin+ and CD56+, while fetal skin tissue had no mature Merkel cells. MCC was immunopositive for p73, CK18, and SOX2 in 32/32 cases, and immunonegative for CK14 in 31/32 cases and for p40 and p63 in 32/32 cases. These results indicate that MCC exhibits different immunophenotypes from Merkel cells (p73-) and basal cells (p40+, p63+, and SOX2-). In contrast, all 3 BCCs, 1 BISC, and 2 SCCs were immunopositive for the basal cell markers p40, p63, and p73. The life cycle of papillomavirus is closely associated with the differentiation of infected basal cells, which requires the transcription factor p63. Changes in p63 expression in FcaPV2-positive MCC may be associated with unique cytokeratin expression patterns (CK14-, CK18+, and CK20+). Furthermore, SOX2 appears to be involved in Merkel cell differentiation in cats, similar to humans and mice.
Read full abstract