Spin-crossover (SCO) ferroelectrics with dual-function switches have attracted great attention for significant magnetoelectric application prospects. However, the multiferroic crystals with SCO features have rarely been reported. Herein, a molecular multiferroic Fe(II) crystalline complex [FeII(C8-F-pbh)2] (1-F, C8-F-pbh = (1Z,N'E)-3-F-4-(octyloxy)-N'-(pyridin-2-ylmethylene)-benzo-hydrazonate) showing the coexistence of ferroelectricity, ferroelasticity, and SCO behavior is presented for the first time. By H/F substitution, the low phase transition temperature (270K) of the non-fluorinated parent compound is significantly increased to 318K in 1-F, which exhibits a spatial symmetry breaking 222F2 type ferroelectric phase transition with clear room-temperature ferroelectricity. Besides, 1-F also displays a spin transition between high- and low-spin states, accompanied by the d-orbital breaking within the t2g 4eg 2 and t2g 6eg° configuration change of octahedrally coordinated FeII center. Moreover, the 222F2 type ferroelectric phase transition is also a ferroelastic one, verified by the ferroelectric domains reversal and the evolution of ferroelastic domains. To the knowledge, 1-F is the first multiferroic SCO molecular crystal. This unprecedented finding sheds light on the exploration of molecular multistability materials for future smart devices.
Read full abstract