Abstract

Colossal and anisotropic thermal expansion is a key function for microscale or nanoscale actuators in material science. Herein, we present a hexanuclear compound of [(Tp*)FeIII (CN)3 ]4 [FeII (Ppmp)]2 ⋅2 CH3 OH (1, Tp*=hydrotris(3,5-dimethyl-pyrazol-1-yl)borate and Ppmp=2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine), which has a rhombic core structure abbreviated as {FeIII 2 FeII 2 }. Magnetic susceptibility measurements and single-crystal X-ray diffraction analyses revealed that 1 underwent thermally-induced spin transition with the thermal hysteresis. The FeII site in 1 behaved as a spin crossover (SCO) unit, and significant deformation of its octahedron was observed during the spin transition process. Moreover, the distortion of the FeII centers actuated anisotropic deformation of the rhombic {FeIII 2 FeII 2 } core, which was spread over the whole crystal through the subsequent molecular rearrangements, leading to the colossal anisotropic thermal expansion. Our results provide a rational strategy for realizing the colossal anisotropic thermal expansion and shape memory effects by tuning the magnetic bistability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.