Time delays and actuator faults are phenomena which are frequently encountered in practical control systems and are found to have significant effects on the performance of operation and control. It is shown that even a very small delay may destabilize the spacecraft system. Therefore, besides considering the effects of modelling uncertainties and external disturbances, time delay and actuator fault effects should be properly handled in the spacecraft to achieve reliable and accurate control. This paper describes a simple and effective method to attitude stabilize a spacecraft. The proposed method works by augmenting a backstepping controller with a modified extended state observer-based feedforward control law. The backstepping control is used to compensate for an unknown delay in the inputs, while the feedforward term attenuates the effects of modelling uncertainties, external disturbances and actuator faults. In particular, actuator faults, modelling uncertainties and external disturbances are viewed as unknown nonlinear functions of the measurable state variables, estimated using a modified extended state observer, and then compensated for. The effectiveness of the proposed control algorithm is analytically authenticated and verified via simulation studies.
Read full abstract