The working accuracy of space optical payloads and sensitive components carried on space aircraft greatly depends on the pointing accuracy and stability of the platform. Based on Disturbance Free Payload (DFP) technology, non-contact maglev technology is proposed in this paper, achieving dynamic and static isolation of the platform module and payload module, so that the vibration and interference of the platform module with movable and flexible components will not be transmitted to the payload module, thereby achieving the effect of vibration isolation. High-precision active control of the payload module is adopted at the same time; the platform module follows the master–slave collaborative control strategy of the payload module, meeting the requirements of high-performance payloads. A primary and backup redundant controller is designed, using a one-to-four architecture. The control board achieves high-speed and high-precision driving current control, voltage output, and outputs current feedback signal sampling. Based on uniform magnetic field design, high-precision force control performance is ensured by adjusting current accuracy. Interdisciplinary joint simulation of electric, magnetic, and structural aspects was conducted on the magnetic levitation isolation system. By conducting physical testing and calibration and designing a testing and calibration system, it has been proven that the system meets the design requirements, achieving high-precision current control technology of 0.15 mA and driving force control technology of 0.5 mN.
Read full abstract