Multispeed transmissions are helpful for improvement of the economy and drivability of electric vehicles (EVs). In this paper, we propose a two-speed transmission based on dual planetary gear mechanism, in which shifts are realized by torque transfer between two brakes located on ring gears. To synthesize the dynamic and economic performances of the vehicle, a multiobjective optimization problem is constructed for gear ratio optimization and Pareto-optimal solutions of gear ratio combinations are obtained by Nondominated sorting genetic algorithm-II (NSGA-II). In particular, the minimum electric energy consumption of the EV is calculated with a fast Dynamic Programming (DP) in each iteration. Following this, a constant-output-torque control (COTC) scheme is adopted for the torque phase and inertia phase of gearshift process to ensure constant output torque on the wheel. To enhance transient responses, the feedforward–feedback controller structure is applied and a disturbance observer is integrated to improve robustness. Simulation results demonstrate that the two-speed transmission has much better performance in terms of acceleration time and energy economy compared to the fixed-ratio transmission, and the proposed gearshift control method is able to achieve fast and smooth gear shift robustly while maintaining constant output torque.
Read full abstract