In recent years the use of biomechanics in athletic training and performance has received a lot of attention, especially in university sports programs. Biomechanics is the study of the mechanical principles that control how biological things move or are constructed. It is critical for understanding the intricate relationships between physical performance, body mechanics, and injury prevention. The objective of this study is to establish how biomechanical variables can be designed and optimized in universities using mathematical modeling. In this study, a novel Emperor Penguin Search-driven Dynamic Feedforward Neural Network (EPSO-DFNN) is proposed to optimize the biomechanical parameters of athletes. Various biomechanical data are utilized from athletes participating in different sports. Biomechanical parameters include muscle activation patterns, joint angles, forces, and movement. The data was preprocessed using Z-score normalization from the obtained data. The Fast Fourier Transform (FFT) using features is extracted from preprocessed data. The proposed method is to identify the optimal configurations for athlete’s movements tailored to their sports and individual biomechanical profiles. The proposed method is the performance of various evaluation metrics such as F1-score (92.76%), precision (91.42%), accuracy (90.02%), and recall (89.69%). The result demonstrated that the proposed method effectively improved the performance in athletic capabilities compared to other traditional algorithms. This study demonstrates how mathematical modeling may be used to optimize biomechanical characteristics, providing insightful information that can be used to improve athletic performance and encourage safer behaviors in athletic settings.
Read full abstract