ABSTRACT Background Fecal microbial transplantation (FMT) is used in the treatment of relapsing Clostridium difficile infection (rCDI). Failure rate for FMT is as high as 10% but the mechanisms contributing to a failed FMT are not understood. We utilized metagenomic data to identify the role of bacteria and bacteriophages on FMT success. Results Subjects with rCDI (n = 19) received FMT from volunteer donors (n = 7) via colonoscopy. Twelve patients fully recovered after a single FMT, while seven patients required a subsequent FMT. DNA was extracted from patient and donor stool samples for shotgun metagenomic analysis. Metagenomics libraries were analyzed focusing on bacterial taxonomy and bacteriophage sequences. Gammaproteobacteria were dominant in rCDI patients prior to FMT largely due to elevated levels of Klebsiella and Escherichia. A successful FMT led to increased levels of Clostridia and Bacteroidia and a reduction in Gammaproteobacteria. In contrast, a failed FMT led to no significant changes in bacterial composition. Bacteriophages were classified during whole metagenomic analysis of each sample and were markedly different between rCDI patients, donors, and a healthy control cohort (n = 96). Bacteriophage sequence reads were increased in CDI patients compared with donors and healthy controls. Successful FMT donors had higher bacteriophage α-diversity and lower relative abundance compared to the donors of a failed initial FMT. Conclusions In this retrospective analysis, FMTs with increased bacteriophage α-diversity were more likely to successfully treat rCDI. In addition, the relative number of bacteriophage reads was lower in donations leading to a successful FMT. These results suggest that bacteriophage abundance may have some role in determining the relative success of FMT.
Read full abstract