Any stretch of coastline requires protection when the rate of erosion exceeds a certain threshold and seasonal coastal drift fluctuations fail to restore balance. Coast erosion can be caused by natural, synthetic, or a combination of the two. Severe storm occurrences, onshore interventions liable for sedimentation, wave action on the coastlines, and rising sea levels caused by climate change are instances of natural factors. The protective methods used to counteract or prevent coastal flooding are categorized as hard and soft engineering techniques. This review paper is based on extensive reviews and analyses of scientific publications. In order to establish a foundation for the selection of appropriate adaptation measures for coastal protection, this research compiles literature on a combination of both natural and artificial models using mangrove trees and polymer-based models’ configurations and their efficiency in coastal flooding. Mangrove roots occur naturally and cannot be manipulated unlike artificial model configuration which can be structurally configured with different hydrodynamic properties. Artificial models may lack the real structural features and hydrodynamic resistance of the mangrove root it depicts, and this can reduce its real-life application and accuracy. Further research is required on the integration of hybrid configuration to fully optimize the functionality of mangrove trees for coastal protection.