Human-caused environmental change has profoundly impacted resource management and land use patterns in Bangladesh’s Chittagong Hill Tracts. This study used multi-temporal Landsat images from 1998, 2008, and 2018 to analyze land use and land cover changes, particularly those associated with forest cover changes, in Bangladesh’s Chittagong Hill Tracts. Using object-based image classification, Landsat images from 1998, 2008, and 2018 were separated into four categories based on their dominant land use and land cover features: forest, grassland, water bodies, and bare land. Post-classification comparison was used to assess the degree and frequency of change, and this method was further developed to evaluate the balance, fluctuation, and adaptation of forests. In addition, the spatial structure of land cover and temporal trajectories related to changes in forest cover were studied. The CA–Markov chain model was also used to anticipate the 2048 LULC map. The image classification of the years 1998, 2008, and 2018 showed that the overall accuracy was 89.65%, 84.44%, and 86.26%; producer accuracy was 90.00%, 68.75%, and 72.22%; and the Kappa coefficient was 85.68, 82.84, and 76.36, respectively. The results showed that between 1998 and 2018, forest cover increased by 58.03%, transforming grassland to forest; grassland increased by 29.50%, converting bare land to grassland; and forest conversion to grassland was 13.34%. In addition, the result of the landscape metric revealed that during the whole study period, class level indicated a fragmentation of forest, bare land, grassland, and water in the CHT, and landscape level indicated by Shannon’s Diversity Index and Shannon’s Evenness Index showed a slight decrease in the land. Based on the CA–Markov model, forest area is predicted to expand to 9129 Km2 in 2048; however, other land uses (bare land and grassland) continue to decrease. This substantial increase in forest cover results from effective forest management based on community forestry practices and the successful execution of Bangladesh’s national forest strategy. However, as Bangladesh’s population rises, so does the country’s need for lumber/timber. Bangladesh’s government should revise its forest policy to meet the local community’s needs without endangering the forest, and policymakers must take climate change seriously. Our strategy for evaluating the critical indicators of changes in forest cover and pathways of change will aid in connecting these patterns to the dynamics of change, such as deforestation and reforestation. It would therefore serve as a framework for developing effective conservation and management plans for the Chittagong Hill regions in Bangladesh.