ObjectivesRobustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval. Materials and methodsPatients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust. ResultsIn total, 160 patients with 480 repeated abdominal CT examinations (range: 2–4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs). ConclusionRadiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.
Read full abstract