The Möbius function μ(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu (n)$$\\end{document} is known for containing limited information on the prime factorization of n. Its known algorithms, however, are all based on factorization and hence are exponentially slow on logn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\log n$$\\end{document}. Consequently, a faster algorithm of μ(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu (n)$$\\end{document} could potentially lead to a fast algorithm of prime factorization which in turn would throw doubt upon the security of most public-key cryptosystems. This research introduces novel approaches to compute μ(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu (n)$$\\end{document} using random forests and neural networks, harnessing the additive properties of μ(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu (n)$$\\end{document}. The machine learning models are trained on a substantial dataset with 317,284 observations (80%), comprising five feature variables, including values of n within the range of 4×109\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4\ imes 10^9$$\\end{document}. We implement the Random Forest with Random Inputs (RFRI) and Feedforward Neural Network (FNN) architectures. The RFRI model achieves a predictive accuracy of 0.9493, a recall of 0.5865, and a precision of 0.6626. On the other hand, the FNN model attains a predictive accuracy of 0.7871, a recall of 0.9477, and a precision of 0.2784. These results strongly support the effectiveness and validity of the proposed algorithms.