In drug discovery, precisely identifying drug–target interactions is crucial for finding new drugs and understanding drug mechanisms. Evolving drug/target heterogeneous data presents challenges in obtaining multimodal representation in drug–target prediction(DTI). To deal with this, we propose ‘ERT-GFAN’, a multimodal drug–target interaction prediction model inspired by molecular biology. Firstly, it integrates bio-inspired principles to obtain structure feature of drugs and targets using Extended Connectivity Fingerprints(ECFP). Simultaneously, the knowledge graph embedding model RotatE is employed to discover the interaction feature of drug–target pairs. Subsequently, Transformer is utilized to refine the contextual neighborhood features from the obtained structure feature and interaction features, and multi-modal high-dimensional fusion features of the three-modal information constructed. Finally, the final DTI prediction results are outputted by integrating the multimodal fusion features into a graphical high-dimensional fusion feature attention network (GFAN) using our innovative multimodal high-dimensional fusion feature attention. This multimodal approach offers a comprehensive understanding of drug–target interactions, addressing challenges in complex knowledge graphs. By combining structure feature, interaction feature, and contextual neighborhood features, ‘ERT-GFAN’ excels in predicting DTI. Empirical evaluations on three datasets demonstrate our method’s superior performance, with AUC of 0.9739, 0.9862, and 0.9667, AUPR of 0.9598, 0.9789, and 0.9750, and Mean Reciprocal Rank(MRR) of 0.7386, 0.7035, and 0.7133. Ablation studies show over a 5% improvement in predictive performance compared to baseline unimodal and bimodal models. These results, along with detailed case studies, highlight the efficacy and robustness of our approach.
Read full abstract